AD-A136 351 COMBINED TENSION-TORSION OF A CYLINDRICAL MIXTURE OF AN 1/)
ELASTIC SOLID AND..(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER M GANDHI ET AL. OCT 83
UNCLASSIFIED MRC-TSR-2587 DAAG29-80-C-0041 F/G 20/11 NL

END

oar

e

2=84

oTIC




o

rPFrEEEE

EEEE

er
&
-
— Indl [N
mw o IM E

~

1.6

N
(3]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A




MRC Technical Summary Report #2587

COMBINIED TENSION-TORSION OF
A CYLINDRICAL MIXTURE OF AN
ELASTIC SOLID AND FLUID

Mukesh Gandhi, K. R. Rajagopal
and A. S. Wineman

A136351

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

Ot obhor 1983

(Received September 15, 1983)

DT FILE COPY e DTIC

_,_.LELECTE A
N DEC2 71983 ‘ﬁ -

Sponsored by

l. S. Army Rescarch Office xre
P. D. Box 12211

Rosearch Triangle Park

North Carolina 27709




UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

COMBINED TENSION-TORSION OF A CYLINDRICAL
MIXTURE OF AN ELASTIC SQLID AND FLUID
Mukesh Gandhi*, K. R. Rajagopal’ and A. S. Wineman*
Technical Summary Report #2587
October 1983
ABSTRACT
In his study of combined finite extension and torsion of a nonlinearly

elastic cylinder, Rivlin/?:;\oltablished a relation for the torsional
stiffness which depends only on the axial force, the axial extension ratio and
the radius of the undeformed cylinder, in the case of small twist. The
relationship 4id not depend on the structure of the -tpred energy function and

b o aatran

is hence termed a ;;;1versa1 Relation.‘L/In this paper,/yt/extond Rivlin's -

AN

result to the case of combined extension and torsion of a cylindrical mixture

of a nonlinearly elastic solid and fluid.
N
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SIGNIFICANCE AND EXPLANATION
In the case of the combined finite extension followed by a small twist of
& nonlinearly elastic cylinder, the torsional stiffness depends only on the
axial force, the axial extension ratio and the radius of the undeformed
cylinder; the stiffness being independent of the specific form of the stored
energy function which characterizes the nonlinearly elastic material. It is
found that the torsional stiffness possesses a similar property in the case of

a cylindrical mixture of a nonlinearly elastic solid and fluid.
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COMBINED TENSION-TORSION OF A CYLINDRICAL
MIXTURE OF AN ELASTIC “OLID AND FLUID

Mukesh Gandhi*, K. R. Rajagopalt and A. S. Wineman*

INTRODUCTION

In his study of the combined finite extension and torsion of a circular
cylinder of a nonlinear elastic incompressible, isotropic material, Rivlin
[1] established a striking result in the case of small twist. He exhibited
a relation for the torsional stiffness (twisting moment per angle of twist)
which depends only on the axial force, the axial extensioﬁ ratio and the
radius of the undeformed cylinder, and does not depend on the mathematical
structure of the stored energy function of the nonlinearly elastic material.
This relation has been termed a "Universal Relation" because it is the same
for all nonlinearly elastic incompressible, isotropic materials. In this
paper ve extend Rivlin's result to the case of combined extension and torsion
of a cylindrical mixture of a nonlinearly elastic solid and fluid.

The first treatment of the problem of combined extension and torsion of
a, rubber cylinder contsining fluid appears to be due to Treloar [2). 1In his
analysis, the cylinder is assumed to be saturated with the fluid. Ia additionm,
the problem is not treated within the context of mixture theory. The present
work differs from Treloar's [2] in two respects. First, the problem is studied
within the context of the theory of interacting continua. Second, there is
no restriction on the fluid content of the mixture, the state of the cylinder

could range from being completely dry to fully saturated.
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In the present problem, both the solid and fluid constituents are at
rest. However, the fluid can be non-homogeneously dispersed throughout the

mixture region, which gives rise to concentration gradients. The physical

wechanism for the existence of such gradients is provided by the presence
of a diffusive body force which each constituent exerts on the other. St
However, when the twisting is small, it is found that the fluid is dispersed

uniformly throughout the mixture.

A brief review of the notations and basic equations relevant to a mixture
of interacting coutinua is provided in section 2. The general problem of
torsion superposed on finite extension is formualted and discussed within the

context of mixture theory, in section 3. The problem of a "small" twist

superposed on a finite extension is studied in detail in the final section.
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2. PRELIMINARIES

In this section, we provide a brief discussion of the basic balance
laws and their consequences which is pertinent to mixture theory. A detailed
exposition of the same can be found in Bowen [3] and Atkin and Crane [4].

A mixture of two continua, s solid Sl and a fluid sz, which are in motion
relative to one another is coansidered. Let

x=xXt) ad y=x(It) (1),,2

denote the motion of the solid and fluid, respectively. Also, let u, £ and

¥, § denote the velocity and accelerstion vectors of S, and S,, respectively.

The deformation gradient tensor for the solid 81 is given by

9
{:%. 2)

Let Py and P, denote the densities of s1 and S2 at time t, messured per unit

volume of the mixture. The mean velocity of the mixture and the total density

of the mixture are then defined by

PY = P8 *+ P,¥, P=Ppy*P, (3)1,2
The sppropriate form for the balance of mass for the solid and fluid are .
Py det E = p,, %)
223 + div (p, v) = 0, ()
13 2 ~

where plo is the mass density of the solid before forming the amixture.
Let g and 1t denote the partial stress tensors for sl and sz, respectively.
Let b denote the diffusive body force. In the absence of external body forces,

the equations of motion for s1 sad s2 are

divg-p=p f, @
divy+b=op, g, 0))
and
g+n=g +n. (®
3 N i




Finally, we discuss briefly the constraint which is introduced on the
motion of the mixture in virtue of the assumption that both the solid 8l and
the fluid s2 are incompressible in their unmixed reference configuration.
1f the solid Sl and the fluid s2 have constant densities P10 and Pao snd volume
Vl and Vz, respectively, in their reference configuration and if one further
assumes that the volume of the mixture is always constrained to be V1 + Vz,

then (cf. Mills [5]), it can be shown that

P P
e S S )
Pi1o P20

Ve shall assume that the mixture under consideration obeys the constraint

expressed by ﬂ9).




3. PROBLEM

:

vhere (r,0z) denote the

instant, A and Y being constants.

dr
(&

k= 0
0

2

Ar

= 0

0

vhere

cylindrical co-ordinate system denoted by (R, 0, Z). We

cylinder is subject to the following deformation

r = r(R),
0 =06+ Az,
2= A2,

The above deformation

The Cauchy-Green strain tensor B which is defined as

E=EE

takes the following form for the above deformation:

0 (4]
£,2 2 2
® ¢ (vAr) A ‘r
¢A2r Az
0 ]
2 2 2
AS + (WRMAG) WAAGR
WAgR a2
dr 3
Ar = &R and Ae =R
. .

Let us consider a solid circular cylinder whose dimensions in the refer-
ence configuration are given by 8 radius Ro and a length Lo' We shall denote

the co-ordinates of a material particle in the reference configuration in a

shall assume that the

(10),

(10),

(10)3

co-ordinates of the particle at (R,0,Z) at the current

corresponds to a

finite elongation (with an associated stretch ratio A) along the z-co-ordinate

direction, followed by a rotation of ¥ per unit current length.

11)

» (12)

sy (13)




A ol

denote the stretch ratios in the r and ® directions, respectively. The prin-

cipal invariants of B are then given as

L, =22« 220+ 6280 + A2, (14)
C22,.2 .2 2,2 2.2.2,

12 = A (Ar + Aa) + Aekr(l + $“RA5), 15)
42,22

I, = AAGAC, (16)

We shall find it useful to express the balance of mass equation (for the

solid constituent) in terms of the stretch ratios. Thus (4) can be expressed

as
P, - 1 .
—!-—-AAA-VS’ 17)
Po *8

wvhere v, represents the volume fraction of the solid.

We now proceed to document the equations of equilibrium which are appro-
priste for the deformation being considered. Since the assumed form of de£0t;
mation implies that the streases depend only on the r co-ordinate, the equa-
tions of equilibrium for the solid constituent, namely (4), reduces to

90 . + % "~ %p - b, =0, (18)

dr r

vhere 9. and %ae denote the appropriate components of g and br the component

of the diffusive body force b in the radial direction. The equilibrium equation

for the fluid constituent, namely (5), reduces to -
d“rr + e "Moo+ bt =0, (19)
dr r

vhere L - and Mo denote the components of n. If T denotes the total stress
teansor, i.e.,

T=g+n

y
then (18) and (19) imply that

drrr + Trr - TBO + 0, (20)

dr r
vhich is the equation of equilibrium for the mixture.




We shall assume that the solid-fluid mixture is such thet its specific
Helmholtz free emergy function has the following constitutive structure (cf.
(s

A = A(E,p,)-
Under the assumption of isotropy and material frame indifference, the free
energy function A can be written in terms of an integrity basis for B as

A =K1, 1,, I, p,). (21). ;
It follows from equations (4), (9) and (16) that

ap¥=1-P ,

P20

and thus A reduces to .

A = A1, 1, pz). (22)

The above constitutive assumption seems to be an appropriate one for a mixture

of a non-linearly elastic matericgd’ like rubber in a solvent (cf. Treloar .

%

The restrictions imposed by thermodynamics and the reductions which can be

achieved for the forms of ghe constitutive relations for the stresses have

been studied in detail in [6]. We provide below the results obtained therein. !
The constitutive relation involving the partial atress components for

the solid and fluid conatituents are given respectively, by

Py
o =@-p -p—lz) 8;5 *+ 200(A; + AT)) By - AR, B, ] (23)
and
m = (9 -p 2 - pp, s . (24)
1j Py 299,714

The constitutive relation for the components of the diffusive body force is

given by




b ...Qﬂ___p_.a.ﬁ”,&i"_?
i axi P10 axi 892 dxi

aBlk

= P l(Ay + 41,08, - ABy %, (25)

where aij denotes the kronecker delta and Ai, i=1,2 is defined through
A, = — , i=1,2. (26)

The scalar p is due to the constraiut of volume additivity. The scalar @ was
introduced into the theory by Green and Naghdi [8]) for thermodynamic consider-
ations. As can be seen from equation (6), (7) and (8) # drops out of the field
equations. It is only of irterest if partial stresses are to be calculated.
Since this is not of interest in the present problem, we drop reference to
it withoﬁt loss of generality. Finally, the constitutive relation for the
total stress takes the form
Ty = ™5 % %
= (-p + PP, o2-)5 . + 20{(A, + A,1.)B . - A,B B .} (27)
P, ij 1 2°1771ij 2 ik kj
For the deformation under consideratiom, it follows from (13) and equa-

tions (25)-(27) that

p—1-)+z(a + A1A% - 2pa)Ad
-(p PLAL + Ryl IR, = 2PWA)A,,

%er P10
(28)
p

_ P 2 2.2.2
Og9 = - (P "10) + 2p(A, + AZII)AO(I + Y"R"AT)

- ZpAZ{A:(l + WROAH2 wzxza“x’é}, (29)
g _= - { gl—) + 2p(A, + AT )Az
z2 P P10 1 271

. 2pA2{A"(1 + ¢2R2A§)}. (30)




B L

- 2 2 2.2,2..2 . .2
Op, = 2P(A, + A1 JRAAS - 204, (YRAAS[(1 + $R°AOIAG + A%]]

0z
= 2p4R {(A, + Ale)xzxe - 4, [Azke((l + y2RA%) + AH1}, (31)
_ Py 2A
ntr = nee = nzz = - (P 52; - pp2 a—p;). (32)

The expression for the diffusive body force is quite complicated and for the
purposes of our analysis here it is sufficient to realize that the diffusive

body force takes the following form:

I A ulR?
br - P dr ( l/plo) + S(Ara Aea Rv Ar, Ae’ A) d’ R )’ (33)

where the prime denotes differentiation with respect to the variable R.
It follows from equations (14)-(16) and (28)-(31) that the components of

the stress ¢ have the following form

g,, = - gl— + £, (A, A, A ¢2R2) no sum on i (34)
ii Pro © 1itler Ter ’ ’
and
0. =URE. (A, A, A, ¥°R%) (35)
0z 6z r’ "o ‘

Also, the components of the total stress for the mixture T have the following

form

2 .
T,,=-p+ b (A, Agy A, ¥ Rz), no sum on i, (36)

and
T. =yRh. (A, A, A, UZRZ). (37)
0z 6z 'r’ "6

The equilibrium equation for the solid (18) can then be re-written in

the form
P (f - £..) p
d 1 rr 06 d 1
ar | Pro ¥ * ) /R TtPar (Plo)
- 8, Ags Ry AL, A, A, 4R) = 0. (38)




— .-

Thus
Py
dR P10

d .o 2
- Rl g L A Ry AL A A, WRY) = 0. (39)

The equation governing the equilibrium of the mixture takes the form

dp _'dhrr hrr - hee

ar - Tar ' r ’ (40)

which is of the form

dp

dR+ SZ(AI’

Ag» Ry A2, AS, A, WPR?) = 0. (41)

Equations (39) and (41) are two highly non-linear second order ordinary
differential equations for r(R) aad p(R). Uae boundary condition arises from
the assumption that the laterai surface of the deformed cylinder is traction
free. This requires that the radial component of the total stress vanishes,
e.g8. Ttt(Ro) = 0. The choice of a second boundary condition is unclear. For
example, there is almost no physical guidance for specifying boundary condi-
tions on the partial stress components. However, for the purposes of this
work, which is the determination of a "Universal relation”, the boundary
condition that Trr(Ro) = 0, is adequate.

Once r(R) and p(R) have been found, the partial and total stress com-

ponents can be determined. Thus, the twisting moment Hz and the axial force

F are given by the formulae

M -2nJ’

. = 2m f °Rer h .91 (42)

Bz

and

) o r
F=2n f°° T,, rdr = 2n f°° r(-p + b, )dr, (43)

where r, is the outer radius of the cylinder in the deformed swollen state.

10




Since the extent of swelling is not known and thus o is not known
apriori, it would be convenient to express the moment Mz and the axial force
F in terms of integrals over the known reference configuration. Thus, we

can express (42) and (43) as

R
- (1 2 3
M, = 2 ], ApAghg R dR, (43)

and

R
F=2r [ 2 A25(-p + )RR, (45)




4, SMALL TWIST SUPERPOSED ON FINITE EXTENSION

In this section we consider the case when a small twist is superposed
oa a finite extension. Thus we shall assume that |¢| << 1 and that we can
expind the relevant quantities in a Taylor series expansion in . Note that
in equations (39) and (41), g, and g, depend on wz. The solutions to (39)

and (41) will be of the form

r=r®, ¥9), p = (R, ¥). “), ,
Thus we can express r and p by their Taylor series expansion as

r = #R) + o), (47)

p = H(R) + owd). (48)

Similarly one can expand Ar and Ae in terms of a Taylor series expansion in

¢2 and the Cauchy-Green strain temnsor (13) now takes on the form

22 o 0
r
2= o & AR + 0(?)
0 wZAgR A2
s B+ oy?). (49)
where
xr = Ar(R, 0),
and
XB = Ae(R, 0).
Likewise, the principal invariants Il’ 12 and I3 and the densities Py» Py

and p can be expanded to be

D32, 02 L 22 _ 42 L 42, 42 2

Il = Ar + Aa + A = xr + xe + A"+ 0(y7)
=1+ + 06, (50)

_ 12 ,2 2,2 2,2 _ (2,2 2.2

12 = At Ae + A At + A Ae = ere + A Xr
A2+ 0w = 1, + oD, (51)
1, = AZAZAZ- 22 232 A?+ o) = i, v 0h, - (52)

12




p, = B, + 0%, p, = B, + 0(¥%), (s3), ,

p=5+owh, (53),
with

2 b 2

a x x » o —= (1 - -, (54)

Pro = Ao ' P P20 1,2

p=B +h, (s4),

Thus, the normal components of the partial and total stress may now be

expressed as

é
0, =" Bi; P+ ’11“:' Xo. A) + 0(02), no sum on 1§, (s5)
T, =-B+B (R, R, )+ 0(¥%), no sum on i. (56)
The diffusive body force b may be expressed as
b =-3L (?L—)x +§(X_, K., R, K7, &2, A) + ov?) (57)
r ’dn plor'r’ etoroxat .

The equilibrium equation for the solid and the mixture now take the form

s B

d l ~ . . 2
-2 byt Bile Re R AL K5 M)+ 06 =0, (s8),
R, R, &, R A5, ) 06D = 0, (s8),

We nov proceed to show that the equations (58)1 and (58)2 in which terms
of 0(*2) are ignored governs the basic finite uniaxial extension problem
vherein the solution {s homogeneous, i.e.,

Rt s constant, Ro = constant.
Since we shall assume that the material is isotropic
L R' = constant. (59)
It follows from (54) that the densities bl' bz and p are coanstant. Moreover,

it follows from the definitions of !‘* and S‘i that

13
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!11 = constant,
511 = constant,
and
S 0"
The diffusive body force b vanishes since the gradients of the densities

and & =8
°r

and strain tensor components ia (25) now vanish. It follows from equations

(38), (40), (58)l and (58)z and the definitions of the function g, and g,,

that
8 =0, (60),
8, =0, (60),
and
'-g = 0. R COR

It then follows from (36), (60) and the boundary conditions on the lateral

surface, Trt = 0, that

5rr(xr' Xe, A) = p(R) = constant. (61)
Finally, from (13) and (59), the deformation is found to be

r = t(R) = AR, (62)
vhere

A= ,\r = xe (63)

is a constant. In the absence of a second boundary condition, R remains
srbitrary. Hence, the equations (58)l and (58)2 in which te;ms of 0(*2) are
ignored, governs the homogeneous finite uniaxisl extension problea. Thus the
general problem of combined uniaxial tension followed by small twist decouples
into a uniaxial tension problem in which the deformation is homogeneous and
a torsion problems in which the twisting is small.

We conclude our analysis by deriving s "universal relation” between the

twisting moment and axial force under the assumption of small twist.

14




The expressions for the twisting moment "z and axial force F in (42)

and (43) become
Ro o 42 3 2
M, =2y S0 A2 by (R, R, A, OR'R + 0GH), (66)

snd

R '
F=a2n [0 RA-BR) + b, (R, Ry, A, O)IRAR + 0(42). (65)

It follows from (50)-(52), (61)-(66), and the deformations of Ar' A,
hOz’ hzz and htr that
= md a)2¢b A o2 2
M= IR BAAT(R; + A AT} + 0(¥), (66)
snd
F = 2nie A2B(A, + A A2 - 2D + 08y, 67
vhere
Ai = Ai(ll’ Iz, ﬁz), 1=1,2
By (66) and (67),
2
>0 F 2 Az_ X?

(68)

Equation (68) expresses a relationship between H‘ and ¥ which is inde-
pendent of the particular from of the gpecific Helsholtz free energy A and
can hence be called a "universal relation”. It is valid for all states in
which the elastic solid is swollen with fluid. In the absence of fluid,

P, = 0, and thus by (9), (17), snd (63), MZ = 1.

In this case, one obtains from (68) that

2
M/¢ R 2

zu—’i.-=-2—°(—5’-‘-—1 (69)

0 A3 -

vhich is the classical expression established by Rivlin (1].
We provide below alternate forms for the "universsl relation” (68) inm

teres of other parsmeters which are of physical interest:

15




Volume Fraction of the Solid

2
A Ve © 1

2Um
§r0

Solid Dénsity

» (7)

Fluid Density

M/6 R 2 - !
R e P . (2) i
ATQ - P, ) -1

P20

2im
W0

Note that if the cylinder undergoes free expansion when it swells with
fluid, isotropy of the material implies RR = xe = A. Then A = A and the
axial force ¥ = 0, by (67). Thus, the "universal relation" (68) is defined

only when A # A, in which case F # 0.
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